—变形菌门
—γ变形菌纲
—肠杆菌目
(资料图片)
—肠杆菌科
—埃希氏菌属
埃希氏菌属(Escherichia),是一种常见的细菌。其中最著名的种是大肠杆菌(Escherichia coli),大肠杆菌是一种厌氧菌,通常生活在人和动物的肠道中。在成人的横断面研究中,大肠杆菌是超过90%个体肠道微生物组的成员,是最早在新生儿出生时定植的细菌之一。
埃希氏菌属细菌是一类适应于肠道环境的细菌,其代谢能力丰富,既可以进行好氧代谢,又可以进行发酵代谢。
大肠杆菌在正常情况下对人体无害,但某些菌株也可能引起感染和疾病。例如,某些毒力菌株的大肠杆菌可引起食物中毒,导致胃肠道症状,如腹泻、呕吐和腹痛。此外,大肠杆菌也可能引起泌尿系统感染和其他感染性疾病。
除了大肠杆菌,
大肠杆菌(Escherichia coli)是一种常见的革兰阴性细菌,存在于人类和动物的肠道中。大肠杆菌的大多数菌株对人类无害,但也有一些菌株具有致病性,可以引起不同程度的疾病。以下是一些主要的致病毒株和它们的具体信息:
大肠杆菌O157:H7
- 特点:产生肠出血性大肠杆菌毒素(Shiga毒素),引起严重的肠道感染。
- 病症:可导致急性胃肠炎、腹泻、腹痛、呕吐和血便,严重时可引起溶血性尿毒症综合征
致病机制
产生肠毒素
某些埃希氏菌株能够产生肠毒素,包括肠毒素A、肠毒素B等。这些毒素能够破坏肠道黏膜细胞,导致腹泻和肠道炎症,引起食物中毒或感染性腹泻。
破坏肠道屏障完整性
大肠杆菌可以通过多种机制破坏肠道屏障的完整性,包括改变肠上皮细胞之间的连接、破坏肠上皮细胞与肠道黏膜之间的黏附、改变肠道黏膜的结构等。这些破坏作用导致肠道屏障的通透性增加,使得细菌、毒素和其他有害物质能够穿过肠道屏障进入血液循环系统,引发炎症反应和其他肠道相关疾病。
激活肠道黏膜免疫
大肠杆菌感染会激活肠道黏膜免疫系统,导致炎症反应和免疫细胞的活化。这些炎症因子和免疫细胞的活化会进一步破坏肠道屏障的完整性,加剧肠道屏障功能的损伤。
引发肠道菌群失调
大肠杆菌感染会导致肠道菌群的失调,即有益菌的数量减少,有害菌的数量增加。这种菌群失调会进一步破坏肠道屏障的完整性,增加肠道屏障的通透性。同时,肠道菌群失调还会影响肠道黏膜免疫系统的平衡,导致炎症反应的增加。
在一些重症患者中,肠道菌群失调常常表现为埃希氏菌属的过度生长,同时伴随着其他有害菌的增加和有益菌的减少。这种失衡的菌群状态与多种疾病的发生和发展密切相关,包括肠道感染、炎症性肠病、代谢性疾病等。
IBD
埃希氏菌属与炎症性肠病(IBD)之间存在着密切的关联。多项研究表明,在IBD患者的肠道中,埃希氏菌属的数量明显增加。
埃希氏菌属属于肠道菌群中的一种细菌,它可以在肠道黏膜上富集并与宿主相互作用。埃希氏菌属的增加可能与肠道黏膜的损伤和炎症反应有关。埃希氏菌属可以通过黏附和侵入肠道上皮细胞,导致炎症反应的加剧。它可以释放一些毒素和代谢产物,损伤宿主细胞膜和上皮屏障,进一步加剧肠道黏膜的损伤。
埃希氏菌属还可以释放细胞毒性扩展底物谱β-内酰胺酶(ESBL),这种酶可以降解β-内酰胺类抗生素,导致抗生素耐药性的产生。抗生素耐药性的增加可能使得治疗IBD的抗生素疗效降低,从而加剧炎症反应。
结直肠癌
大肠癌与大肠杆菌(Escherichia coli)的关联机制是多方面的。
首先,一些致病性的大肠杆菌菌株,如粘附侵袭性大肠杆菌(AIEC)和肠致病性大肠杆菌(EPEC),分泌的环调素染色质蛋白(colibactin)和效应蛋白EspF与大肠癌的发展和进展有关。
其次,大肠杆菌感染破坏了肠道微生物的微环境,从而诱导大肠癌的发生。
此外,大肠杆菌感染还与慢性炎症相关,而慢性炎症是大肠癌的一个潜在风险因素。大肠杆菌还可以通过多种策略促进结肠癌的生长和发展。
肠道微生物组的失调也被认为是大肠癌发生的因素之一。一些研究还发现,大肠癌患者的肠道微生物组成与正常人有所不同,大肠杆菌等菌株的丰度增加与大肠癌的发生相关。
溶血性尿毒症综合症
在摄入被致病性产志贺毒素的大肠杆菌(STEC)污染的食物或水后,Stxs可能通过M细胞摄取和胞吞作用或细胞旁转运穿过肠上皮屏障。一旦进入粘膜下层,毒素就会激活先天免疫细胞,如中性粒细胞或单核细胞,它们作为“载体”细胞在血液中输送Stxs,还可能通过局部产生促炎细胞因子进一步加剧组织损伤。
最终,毒素被转移到肾小球内皮细胞和肾小管上皮细胞,这些细胞富含毒素受体Gb3。对主要靶器官肾脏的损伤会导致腹泻相关溶血性尿毒症综合征。
doi.org/10.3389/fcimb.2020.00273
心脑血管及代谢疾病
一些研究发现,在动脉粥样硬化患者中,肠杆菌属的丰度明显增加,而其他一些有益菌群的丰度明显降低。肠杆菌属的增加可能与动脉粥样硬化的发生和发展有关。
埃希氏菌属与糖尿病之间存在一定的关联。糖尿病患者往往存在高血糖状态,这为埃希氏菌属等细菌提供了良好的生长环境。研究发现,糖尿病患者的肠道菌群组成与健康人存在差异,其中埃希氏菌属的相对丰度较高。
埃希氏菌属可以产生多种促炎因子,如脂多糖和肽聚糖,从而引发宿主免疫反应,导致不同程度的肠道炎症。埃希氏菌属还可以破坏肠道上皮的完整性,导致低度炎症和自身免疫反应的发生,增加了1型糖尿病的风险。
研究还发现,糖尿病患者肠道菌群的改变与炎症、代谢紊乱等病理过程密切相关。
Escherichia与二甲双胍
二甲双胍的使用会导致埃希氏菌属的丰度增加
多项研究发现,二甲双胍治疗后,埃希氏菌属的数量明显增加。这种变化在2型糖尿病患者和健康人群中均有观察到。
埃希氏菌属的增加与二甲双胍的副作用有关
一些研究发现,埃希氏菌属的增加与二甲双胍治疗的胃肠道副作用有关。这可能是由于埃希氏菌属的存在导致了肠道内毒素的合成增加,从而引起胃肠道不适的症状。
埃希氏菌属的增加可能与肠道菌群的失衡有关
研究表明,二甲双胍的使用会导致肠道菌群的改变,包括埃希氏菌属的增加和其他有益菌的减少。这种菌群失衡可能与二甲双胍的疗效和副作用有关。
埃希氏菌属的增加可能与肠道炎症和代谢紊乱有关
一些研究发现,埃希氏菌属的增加与肠道炎症和代谢紊乱相关。这可能是由于埃希氏菌属的存在导致了肠道内炎症因子的释放增加,从而影响了机体的代谢功能。
非酒精性脂肪肝病 (NAFLD)
埃希氏菌属与非酒精性脂肪肝病(NAFLD)之间存在着密切的关联。多项研究发现,在非酒精性脂肪肝病患者中,埃希氏菌属的丰度明显增加。
埃希氏菌属可以产生乙醇,乙醇会破坏肠道屏障功能,导致肠道通透性增加。这可能是埃希氏菌属与非酒精性脂肪肝病发展相关的关键机制之一。
另外,埃希氏菌属的增加也与肝脏炎症和肝纤维化的发生相关。研究发现,在NAFLD患者中,埃希氏菌属的数量与肝纤维化的严重程度呈正相关。埃希氏菌属可能通过产生内毒素和诱导炎症反应,促进肝脏纤维化的发展。
肠道菌群失调和肠道屏障功能受损是NAFLD发展的重要因素。埃希氏菌属的增加可能导致肠道菌群失衡,进一步破坏肠道屏障功能,使内毒素进入血液循环,引发炎症反应,从而促进NAFLD的发展。
多动症(ADHD)
埃希氏菌属与多动症存在相关性。研究发现,多动症患者的肠道菌群中有害菌如肠杆菌、大肠埃希氏菌和梭状芽孢杆菌的丰度显著增加,而有益菌如双歧杆菌、瘤胃球菌丰度显著降低。这些结果表明,某些埃希氏菌属可能与多动症的发展和症状有关。
益生菌、益生元
罗伊氏乳杆菌DSM 17938已被证明具有有效的抗菌活性,调节免疫应答、减少肠道炎症。
植物乳杆菌CCFM1143对产肠毒素大肠杆菌引起的腹泻具有最明显的保护作用,通过调节炎症细胞因子、再平衡肠道菌群和调节短链脂肪酸生成的方式。
鼠李糖乳杆菌SHA113对耐药大肠杆菌QBQ009感染显示出有效的治疗效果。
短双歧杆菌FHNFQ23M3和双歧双歧杆菌FSDJN7O5可缓解产肠毒素大肠杆菌引起的腹泻症状。
荷花种子荚中的寡聚原花青素(LSPC)和益生菌(鼠李糖乳杆菌LGG和双歧杆菌Bb-12)对肠毒素性大肠杆菌(ETEC)感染的腹泻小鼠的保护作用。
阿拉伯木聚糖、菊粉和罗伊氏乳杆菌 1063 抑制粘膜中粘液的粘附侵袭性大肠杆菌。
其他饮食或补充剂
肉桂皮油
抗性淀粉(III型)
甘草酸
维生素D
石榴
泡叶藻(Ascophyllum nodosum)
鼠尾草(Salvia officinalis)
三果宝(Triphala)
大蒜(大蒜素)
黄芪属
美洲刺人参(Oplopanax horridus)
车前蕉(Plantain bananas)
牛至精油
蔓越莓低聚糖
乳铁蛋白
黄芩汤
苍耳精油
相关阅读:
肠道重要菌属——嗜胆菌属 (Bilophila)喜欢脂肪、耐胆汁的促炎菌肠道核心菌属——优/真杆菌属(Eubacterium),你为什么要关心它?
主要参考文献:
向上滑动阅览
Braz VS, Melchior K, Moreira CG.Escherichia colias a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol. 2020 Dec 21;10:548492. doi: 10.3389/fcimb.2020.548492. PMID: 33409157; PMCID: PMC7779793.
Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM.Escherichia coliPathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev. 2019 Jan 30;32(2):e00060-18. doi: 10.1128/CMR.00060-18. PMID: 30700431; PMCID: PMC6431131.
Sun J, Marais JP, Khoo C, LaPlante K, Vejborg RM, Givskov M, Tolker-Nielsen T, Seeram NP, Rowley DC. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenicEscherichia coli. J Funct Foods. 2015 Aug;17:235-242. doi: 10.1016/j.jff.2015.05.016. PMID: 26613004; PMCID: PMC4657873.
Kim JS, Lee MS, Kim JH. Recent Updates on Outbreaks of Shiga Toxin-ProducingEscherichia coliand Its Potential Reservoirs. Front Cell Infect Microbiol. 2020 Jun 4;10:273. doi: 10.3389/fcimb.2020.00273. PMID: 32582571; PMCID: PMC7287036.
Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Gao Q, Tian B, Cheng A. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Sci Total Environ. 2021 Dec 10;799:149280. doi: 10.1016/j.scitotenv.2021.149280. Epub 2021 Jul 27. PMID: 34364270.
Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol. 2021 Jan;19(1):37-54. doi: 10.1038/s41579-020-0416-x. Epub 2020 Aug 21. PMID: 32826992.
Leekitcharoenphon P, Johansson MHK, Munk P, Malorny B, Skarżyńska M, Wadepohl K, Moyano G, Hesp A, Veldman KT, Bossers A; EFFORT Consortium; Zając M, Wasyl D, Sanders P, Gonzalez-Zorn B, Brouwer MSM, Wagenaar JA, Heederik DJJ, Mevius D, Aarestrup FM. Genomic evolution of antimicrobial resistance in Escherichia coli. Sci Rep. 2021 Jul 23;11(1):15108. doi: 10.1038/s41598-021-93970-7. PMID: 34301966; PMCID: PMC8302606.
Khorsand B, Asadzadeh Aghdaei H, Nazemalhosseini-Mojarad E, Nadalian B, Nadalian B, Houri H. Overrepresentation of Enterobacteriaceae andEscherichia coliis the major gut microbiome signature in Crohn"s disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets. Front Cell Infect Microbiol. 2022 Oct 4;12:1015890. doi: 10.3389/fcimb.2022.1015890. PMID: 36268225; PMCID: PMC9577114.
Wang J, Li R, Zhang M, Gu C, Wang H, Feng J, Bao L, Wu Y, Chen S, Zhang X. Influence of Huangqin Decoction on the immune function and fecal microbiome of chicks after experimental infection with Escherichia coli O78. Sci Rep. 2022 Oct 5;12(1):16632. doi: 10.1038/s41598-022-20709-3. Erratum in: Sci Rep. 2022 Nov 18;12(1):19901. PMID: 36198724; PMCID: PMC9534884.